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Abstract. In this paper we have examined the strongly correlated Falicov–Kimball model in infinite dimen-
sions with the help of a diagrammatic technique for the Hubbard X-operators. This model is represented
by the simplified t−J model with introduced intra-atomic level energy ε0 for localized particles. For the
Bethe lattice with z →∞, we have found that the obtained equations for the band Green’s function and
self-energy coincide with the corresponding Brandt–Mielsch equations taken at U →∞, and are resolved
in analytical form both in the homogeneous phase and in the chessboard phase. In the latter case we
have obtained the equation for the order parameter defining the chessboard-like distribution of localized
particles. Instability of the homogeneous phase and properties of the chessboard phase are investigated in
detail. In particular, it is found that the temperature dependence of the chessboard order parameter has
reentrant behaviour for some range of values of ε0.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.45.Lr Charge-density-wave systems

1 Introduction

The research of electron correlation effects induced by
strong intra-atomic interactions remains at the center of
attention of investigators after three decades. On the one
hand, this interest is conditioned by discoveries of new
materials such as the heavy-fermion compounds or the
high-temperature superconductors. But from a theoretical
point of view the long standing attention to the strongly
correlated electron systems is due to the unsatisfactory
state of their theory.

Indeed, in the theory of the mentioned systems there
are many methods and approaches for calculation of differ-
ent physical quantities. However, some of these methods
such as the method of decoupling Green’s functions or the
slave-boson method contain uncontrolled approximations.
Other methods (for example, diagrammatic technique for
the HubbardX-operators) are very cumbersome and hard.
On the whole we have many contradictory calculations
and a few steady and logically correct results.

In our opinion, the exact solution of the Falicov–
Kimball model in infinite dimensions [1–3] is one of the
most interesting results in the physics of the strongly cor-
related systems. Further development of the theory of this
model in infinite dimensions was made in the following pa-
pers [4–8].

The spinless Falicov–Kimball model [9] was originally
introduced to describe the metal-insulator transition in
systems with localized (f - ) and itinerant (d-) electrons. It
has also attracted interest as a model for electron-induced
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formation of crystalline order [10], and for other applica-
tions. Its Hamiltonian has the form

H = −µ
∑
i

d†idi + (ε0 − µ)
∑
i

f†i fi

+ U
∑
i

d†idif
†
i fi +

∑
〈i,j〉

tijd
†
idj . (1.1)

Here d†i (f†i ) is the creation operator of d- (f -) electrons,
U is the intra-atomic interaction energy. The chemical po-
tential µ constrains the total number of itinerant and lo-
calized electrons. The important parameter of the theory
ε0 sets the energy level of a localized electron with respect
to the middle of the itinerant electron band. When ε0 = 0,
we have the simplified Hubbard model in which electrons
with, for example, ↓-spin projection are localized.

In spite of its simplicity the Falicov–Kimball model
reveals a series of non-trivial properties. In particular, the
authors of the papers [10–12] have found that the Falicov–
Kimball system can undergo a phase transition at some
finite temperature Tc, and in the ground state there is a
chessboard-like distribution of the localized electrons. The
phase transition at T = Tc can occur in a d-dimensional
lattice with d ≥ 2.

Brandt and Mielsch [1–3] have obtained the exact solu-
tion of the Falicov–Kimball model in infinite dimensions
by mapping the lattice problem on an atomic problem
with an additional time-dependent field acting on the itin-
erant electrons. They were able to calculate the transition
temperature dependence on interaction U for different oc-
cupation numbers of localized electrons and to study the
chessboard phase. One can show [4,5] that the Brandt-
Mielsch equations for the itinerant electron Green’s
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function and self-energy are the equations of the dynami-
cal mean-field theory and the description of transition into
the chessboard phase is the true mean-field description.

It should be noted that the Brandt-Mielsch solution
has been used by several authors as the background for
the approximate solution of the d = ∞ Hubbard model
[13–15] and d = ∞ t−J model [16]. The general idea of
these approaches is to treat the electrons of some spin
projection as moving in the field of the electrons of another
spin projection, considered to be frozen and static. This
is the idea of molecular field approximation.

In this paper we study the strongly correlated limit
(U � W , W is the bandwidth of itinerant electrons)
of the Falicov–Kimball model in infinite dimensions. One
can show that the Hamiltonian of the strongly corelated
Falicov–Kimball model is written as

H = H0 +Hint, (1.2)

H0 = −µ
∑
i

X++
i + (ε0 − µ)

∑
i

X−−i , (1.3)

Hint = Ht +HJ

=
∑
〈i,j〉

tijX
+0
i X0+

j −
∑
〈i,j〉

JijX
++
i X−−j . (1.4)

Here, Xpq
i is the Hubbard X-operator describing the tran-

sition of the lattice site with number i from |q〉-state to the
|p〉-state; p, q = 0,+,−. |+〉-state (|−〉-state) is associated
with the state of the itinerant (localized) electrons. |0〉-
state is the state without electrons. The quantities tij and
Jij are assumed to be nonzero for the nearest neighbours,
and J = t2/U .

In infinite dimensions the second term HJ in (1.4) is
decoupled as

HJ = −
∑
〈i,j〉

Jij

(
〈X++

i 〉X
−−
j +X++

i 〈X
−−
j 〉

)
. (1.5)

Therefore, it is convenient to add this term to H0, so that
Hint = Ht and

H0 =
∑
iσ

εiσX
σσ
i , (1.6)

where
εi+ = −µ−

∑
j

Jij〈X
−−
j 〉,

εi− = ε0 − µ−
∑
j

Jij〈X
++
j 〉. (1.7)

Using the rebuilt Hamiltonian, in Section 2 we define the
set of equations for the band Green’s function and self-
energy by diagrammatic technique for the Hubbard X-
operators. In this section we also give the expression for
the f−f correlation function from which one can obtain

=

= + R

R ,

Fig. 1. General diagram of the structure of band Green’s func-
tion.

the equation for the transition temperature. The main re-
sults of this section coincide with the Brandt-Mielsch re-
sults [1,2] taken at U → ∞. In Section 3 we show that
the equations obtained in Section 2 can be resolved in an-
alytical form for the Bethe lattice with z → ∞, where z
is the number of nearest neighbours. Using the f−f cor-
relation function for the Bethe lattice, we study in this
section instability of the homogeneous phase. In Section 4
we consider the chessboard phase with the help of the
equation for the chessboard phase order parameter. This
equation can be obtained for the Bethe lattice in analyt-
ical form too. Some concluding remarks are given in the
last section.

2 Band Green’s function and general
equations

In order to obtain the equations for the band Green’s func-
tion

G(i, i′; τ − τ ′) = −〈TX̃0+
i (τ)X̃+0

i′ (τ ′)〉, (2.1)

we shall use the diagrammatic technique for the Hubbard
X-operators (on this subject see Refs. [17,18]).

Because of the complicated anticommutation relation

X0+
i X+0

i′ +X+0
i′ X

0+
i = F+0

i δii′ , F+0
i = 1−X−−i

(2.2)

the general expression for the function (2.1) in our model
has the form shown in Figure 1, where the transfer integral
tii′ is associated with the wavy line and the “zero” Green’s
function

G0(i, i′; iωs) =
δii′

iωs − εi+
(2.3)

is associated with the thin solid line.
It is seen from Figure 1 that in contrast to the ordinary

diagram technique for the standard Fermi operators the
expression for function (2.1) contains so-called “end” part
R(i, i′; τ − τ ′), so that

G(i, i′; iωs) =
∑
i1

G(i, i1; iωs)R(i1, i
′; iωs), (2.4)

where G(i, i′; iωs), represented in Figure 1 by the double
solid line, obeys the equation

G(i, i′; iωs) = G0(i, i′; iωs)
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++ + + . . .
Fig. 2. Diagram series for Ps(i, i).

+
∑
i1,i2

G0(i, i1; iωs)Ξ(i1, i2; iωs)G(i2, i
′; iωs), (2.5)

where

Ξ(i, i′; iωs) =
∑
i1

R(i, i1; iωs)ti1i′ . (2.6)

In accordance with the general ideology of the the-
ory of itinerant electron systems in infinite-dimensional
space [19,20], we shall consider that

R(i, i′; iωs) = R(i, i; iωs)δii′ . (2.7)

Therefore,
Gs(i, i

′) = Gs(i, i
′)Rs(i

′, i′),

Ξs(i, i
′) = Rs(i, i)tii′ (2.8)

where we have used the following designations

G(i, i′; iωs) ≡ Gs(i, i
′),

G(i, i′; iωs) ≡ Gs(i, i
′) (2.9)

and so on.
One can show that the usual Dyson self-energy part

Σs(i, i) in equation

G−1
s (i, i′) =

(
iωs − εi+

)
δii′ − tii′ −Σs(i, i)δii′ (2.10)

has the form

Σs(i, i) =
Rs(i, i)− 1

G0
s(i, i)Rs(i, i)

· (2.11)

Therefore, in our approach the problem of calculation of
Σs(i, i) is replaced by one of Rs(i, i).

Let us find the equation for “end” part Rs(i, i). It is
convenient for this purpose to introduce the new quantity

P (i, i′; τ − τ ′) =
∑
i1

tii1G(i1, i
′; τ − τ ′). (2.12)

Diagrams, taking into account for P (i, i′; τ − τ ′) in the
case i = i′, are in Figure 2 where unshaded ovals with the
n bold points inside correspond to “zero” cumulants:

i1 i2 in

= D0(i1, i2, . . . , in) (2.13)

= (−1)n−1 ∂
n−1

∂xn−1
i1−

〈F+0
i1
〉0δi1i2δi2i3 . . . δin−1in ,

++ +

+

++ + +

+

+++

. . .=

= + + + . . . ;

+ . . . =

Fig. 3. Rebuilt diagram series for Ps(i, i) and a diagram series
for Ps(i, i).

〈F+0
i 〉0 = 1− 〈X−−i 〉0 ≡ 1− w0

i , (2.14)

w0
i =

exi−

1 + exi+ + exi−
, xiσ = −βεiσ, β =

1

T
· (2.15)

The series in Figure 2 is a sum of diagrams with external
vertices having equal site numbers and with every possi-
ble cumulant bonds replaced by those ones taken in the
exact local approximation. These exact local cumulants
D(i1, i2, . . . , in) are presented in Figure 2 by shaded ovals.

The possibility of the exact calculation of the cumu-
lants in local approximation is caused by the fact that

[H, F+0
i ] = 0

and that the exact average of T -product of F+0
i -operators

taken in the Heisenberg presentation does not depend on
Matsubara times.

Thus,
≡ D(i) = 1− wi,

≡ D(i1, i2) = wi1
(
1− wi1

)
δi1i2 ,

≡ D(i1, i2, i3) = −wi1
(
1− wi1

)(
1− 2wi1

)
δi1i2δi2i3 (2.16)

and so on, where

wi = 〈X−−i 〉. (2.17)

All these formulae are easily calculated with the help of
equations (2.13–2.15) with the change of w0

i by wi. The
exact equation for wi will be given later.

To sum the series in Figure 2 let us rebuild it, so that
as a result we can obtain the series shown in Figure 3. For
this, taking into account the circumstance that the sum-
mation is taken over lattice sites of internal vertices, we
select in each diagram in Figure 2 the contributions with
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Fig. 4. Diagrams of this type are equal to zero in limit d→∞.

internal vertices coinciding by site number with external
vertex in every possible way. It is necessary to use rela-
tions (2.16) when combining. Thus, in Figure 3 at first,
third, seventh and eight diagrams of the series for Ps(i, i)
no one among the internal vertices can coincide with exter-
nal vertex, and the quantity P(i, i; iωs) ≡ Ps(i, i), shown
in the same figure, is the sum of the diagrams of just such
a type.

After the mentioned rebuilding, graphs of the type
shown in Figure 4 turn out to be omitted in Figure 3.
But they are equal to zero in the limit d→∞ or z →∞,
because diagrams of such a type have at least one pair of
internal vertices that are connected by local cumulants.
(Method of estimating of diagrams with respect to 1/d or
1/z is discussed, for example, in Ref. [21]).

The series for Ps(i, i) in Figure 3 is summed easily in
terms of functions Ps(i, i):

Ps(i, i) = Ps(i, i)
1− wiPs(i, i)

1−Ps(i, i)
· (2.18)

On the other hand, from the evident equations for Ps(i, i
′)

and Ps(i, i′):

Ps(i, i
′) = P 0

s (i, i′) +
∑
i1

P 0
s (i, i1)Rs(i1, i1)Ps(i1, i

′),

(2.19)

Ps(i, i
′) = P 0

s (i, i′) +
∑
i1 6=i′

P 0
s (i, i1)Rs(i1, i1)Ps(i1, i

′),

(2.20)

where

P 0
s (i, i′) =

tii′

iωs − εi+
,

one can obtain

Ps(i, i) =
Ps(i, i)

1 +Rs(i, i)Ps(i, i)
· (2.21)

By substituting (2.21) into (2.18) we obtain the desired
equation for Rs(i, i):

Rs(i, i) =
1− wi

1 + Ps(i, i)
[
Rs(i, i)− 1

] · (2.22)

After some manipulations with the help of the equation
(2.22), one can obtain the following useful relations

Gs(i, i) = Gs(i, i)− wiG
0
s(i, i), (2.23)

Rs(i, i) =
Gs(i, i)

Gs(i, i)
(2.24)

+ + 1
2
_+ +

+ + + 1
2
_1

2! + . . .

Fig. 5. Diagram series for wi.

1
2!+ + + . . .

= + + + . . .1
2

1
3

,

Fig. 6. Rebuilt diagram series for wi.

and as a result we have

Σs(i, i) = −
wi

Gs(i, i)
· (2.25)

This is the Brandt-Mielsch result for the self-energy part
of the band Green’s function for the case U →∞.

For the calculation of the probability of finding
the site with number i occupied by localized electron
(f -occupation number)

wi = 〈X−−i 〉 =
〈TX̃−−i (τ)σ(β)〉0

〈σ(β)〉0
, (2.26)

where σ(β) is the temperature scattering matrix, let us
examine the series shown in Figure 5. After rebuilding this
series, analogous in practice to the one done for function
Ps(i, i) it is possible to obtain the series shown in Figure 6.
This series is a Taylor series and is summed easily. As a
result we obtain

wi =
exi−+λi

1 + exi+ + exi−+λi
, (2.27)

where

λi = −
∑
s

ln
(

1−Ps(i, i)
)

= −
∑
s

ln
(
Zs(i, i)G

0
s(i, i)

)
, (2.28)

Zs(i, i) =
1

Gs(i, i)
+Σs(i, i). (2.29)

Now let us calculate the f−f correlation function (with
the factor 1/T )

χ−−(i, i) =
1

T
〈(X−−i − wi)(X

−−
i′ − wi′)〉

= −
dwi

dε0
i′
, ε0

i′ → ε0 (2.30)
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for the case of the homogeneous phase, where wi = w.
For this aim, we shall use the method of Brandt and
Mielsch [1].

From equations (2.30, 2.27) one can obtain directly

dwi

dε0
i′

= −
1

T
w(1− w)δii′ + w(1− w)

×
∑
i1

Jii1
∑
s

dGs(i1, i1)

dε0
i′

− w(1− w)
∑
s

1

Zs

dZs(i, i)

dε0
i′
·

(2.31)

Taking into account that

dZs(i, i)

dε0
i′

=
∑
i1

dZs(i, i)

dwi1

dwi1
dε0
i′

(2.32)

and

dGs(i, i)

dε0
i′

=
∑
i1

dGs(i, i)

dwi1

dwi1
dε0
i′

(2.33)

we have

dwi

dε0
i′

= −
1

T
w(1− w)δii′ − w(1− w)

×
∑
s

∑
i1

(
1

Zs

dZs(i, i)

dwi1
−
∑
i2

Jii2
dGs(i2, i2)

dwi1

)
dwi1
dε0
i′
·

(2.34)

From (2.29) we find by implicit differentiation

dZs(i, i)

dwi′
=
∂Σs

∂w
δii′ +

(
−

1

G2
s

+
∂Σs

∂Gs

)
dGs(i, i)

dwi′
· (2.35)

Substituting (2.35) into (2.34), we can see that it is nec-
essary to calculate the total derivative dGs(i, i)/dwi′ yet.
With the help of the relation

Gs(i, i) =
∑
i1,i2

Gs(i, i1)G−1
s (i1, i2)Gs(i2, i)

and (2.10) one can obtain for it the following equation

dGs(i, i)

dwi′
=
∑
i1

Gs(i, i1)Gs(i1, i)

×

(
∂Σs

∂w
δi1i′ − Ji1i′ +

∂Σs

∂Gs

dGs(i1, i1)

dwi′

)
·

(2.36)

After the Fourier transformation we have the final expres-
sion for χ−−(q) as

χ−−(q) =
w(1− w)

D(q)
, (2.37)

where

D(q) = T + wn+J(q) + wT
∑
s

1 + GsJ(q)

wχ0
s(q) − G2

s

×
{
G2
s − χ

0
s(q)− (1− w)GsJ(q)χ0

s(q)
}
, (2.38)

χ0
s(q) =

1

N

∑
k

Gs(k)Gs(k + q), (2.39)

Gs(k) and J(q) are the Fourier transforms of Gs(i, i′) and
Jii′ , n+ = 〈X++

i 〉 is the itinerant electron concentration.

3 Bethe lattice. Instability of the
homogeneous phase

In contrast to the case of Gaussian density of states uti-
lized by Brandt and Mielsch [1,2], the equations

Gs =

∞∫
−∞

ρ0(ε)dε

iωs + µ+ J∗w − ε−Σs
(3.1)

and

Σs = −
w

Gs
, (3.2)

where J∗ = Jz = const, can be resolved for the case of
the Bethe lattice with z →∞ in analytical form.

Indeed, in this case

ρ0(ε) =
4

πW

√√√√1−

(
2ε

W

)2

, −
1

2
W < ε <

1

2
W, (3.3)

W is the bandwidth, the integral in (3.1) is taken, and with
the help of (3.2) one can obtain the following expressions
for Gs:

Gs =
8

W

{
iωs + µ−

√
(iωs + µ)2 −

1

4
W 2(1− w)

}
(3.4)

and for Σs:

Σs = −
1

2

(
w

1− w

)

×

{
iωs + µ+

√
(iωs + µ)2 −

1

4
W 2(1− w)

}
, (3.5)

ImΣ(ω + iδ)

=


− 1

2

(
w

1−w

)√
a2 − (ω + µ)2, −a < ω + µ < a

0, −a ≥ ω + µ ≥ a

(3.6)

where

a =
1

2
W
√

1− w (3.7)

is the halfwidth of the correlated band.
The chemical potential in (3.4) was renormalized by

µ+ J∗w → µ. The equation for it has the form

n = w + n+ = w + T
∑
s

Gs
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or

n = w + (1− w)
2

π

1∫
−1

dx
√

1− x2f(ax), (3.8)

where n is the total electron concentration and

f(z) =
1

exp[β(z − µ)] + 1

is the Fermi–Dirac function.
In the case of the Bethe lattice the quantity w

(f -occupation number) obeys the following equation

w =
1

exp[β(εf − µ)] + 1
, (3.9)

where

εf = ε0 − J∗(n− 2w) +
1

π

π∫
0

dt ln
(

1 + eβ(µ−a cos t)
)

(3.10)

is the renormalized f -particle intra-atomic level. The ex-
pression (3.8) is obtained from (2.27) after the calculation
of λi with the help of (2.28, 3.4, 3.5).

At T = 0 the equations (3.8, 3.10) are represented by

n =
1

2
(1 + w)

+ (1− w)
1

π

{
µ

a

√
1− (µ/a)2 + arcsin

µ

a

}
(3.11)

and

εf = ε0 − J∗(n− 2w) +
1

2
µ

+
1

π

{
µarcsin

µ

a
+
√
a2 − µ2

}
, (3.12)

where µ ≤ a.
Now let us discuss the obtained results. Firstly,

n ≤ 1 at any temperature and any chemical potential.
When w = 1, n = 1. Secondly, the f -occupation number
w in the case T = 0 can attain only three values:
w = 1 when

ε0 < −J∗, (3.13)

w = 1/2 when

εf = µ (3.14)

and w = 0 under the following condition

ε0 − J∗n+
1

π

(
µarcsin

2µ

W
+
√
W 2/4− µ2

)
−

1

2
µ > 0.

(3.15)

Fig. 7. Curves on which w = 0.5 for different values of ε0.
1 – ε0 = 0.1; 2 – ε0 = 0.2 and so on to 10 – ε0 = 1.0.

(A discussion of the importance of the behaviour of w
for interpretation of valence transitions can be found in
Refs. [22,23]).

The case (3.14) of the pinning of the chemical potential
µ at the localized particle level was considered in [7] for the
Lorentzian density of band states. Let us note in connec-
tion with it that the imaginary part of itinerant electrons
self-energy in [7] contains the multiplier w(1 − w) which
is not equal to zero only in the case of (3.14). As a result,
the Fermi-liquid behaviour in this case is invalidated [7].

For the case of the Bethe lattice and U � W , the
self-energy of itinerant electrons contains the multiplier
w/(1 − w) (see Eq. (3.5)). When w = 0, the subsystem
of itinerant electrons presents itself as a free electron gas.
When w = 1, the concentration of itinerant electrons is
equal to zero and Gs = 0. At T = 0 the self-energy is a
non-trivial quantity only when w = 1/2.

It should be noted that the multipliers w(1 − w) and
w/(1−w) are characteristic ones for the Falicov–Kimball
model. As we shall see in future, the multiplier w(1 − w)
defines the behaviour of the transition temperature to a
chessboard phase. Therefore, let us examine the conditions
(3.13–3.15) in detail.

For our case the curves, on which equation (3.14) is
satisfied, are shown in Figure 7 for different ε0 (all the
energetical quantities in figures are given in units of W/2).
It is seen that the f -occupation number w can attain the
value w = 1/2 in the cases of non-positive ε0 only. In the
ε0 = 0 case w = 1/2 on the n = 1 line. This is a symmetric
case. As an explanation of the Figure 7, let us note that
in the w = 1/2 case n ≥ 1/2 for any ε0.

For negative ε0 the f -occupation number can attain
the value w = 1 too. This fact is easily seen from condition
(3.13). In this case the value of n is always equal to 1.

Figure 8 shows the set of curves defining the bound-
aries of regions in which w = 0 for different values of ε0

(see the condition (3.15)). On the left, from the corre-
sponding curves, w = 0 for given ε0. On the right, from
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Fig. 8. Curves on the left from which w = 0 for different values
of ε0. A number near a curves shows the values of ε0.

ε

Fig. 9. Curves on the right from which w = 0 for different
values of n. 1 – n = 0.1; 2 – n = 0.2 and so on to 10 – n = 1.0.
On the left from the dashed line w = 1.

the one with the exceptions of the range J∗ < −ε0 on the
n = 1 axis, where w = 1, and the corresponding curve,
where w = 1/2 (see Fig. 7), the equation (3.9) at T = 0
has no solution. The crossing of a J∗ = const line with
the w = 0 curve for given ε0 defines a critical value of the
total electron concentration nc depending on J∗ and ε0,
such that at n < nc the value of w is equal to zero and the
one at n > nc is undefined in the sense of the existence of
a solution for the equation (3.9) at T = 0.

Figure 9 shows the same condition (3.15) for different
n on the phase plane which is defined by the other quan-
tities: J∗ and ε0. The crossing of a J∗ = const line with
the w = 0 curve for given n defines a critical value ε0

c de-
pending on J∗ and n, such that the value of w is equal to
zero at ε0 > ε0

c . The dashed line in the same figure shows
the right boundary of region, where w = 1.

1/χ

ε

Fig. 10. Temperature dependence of the inverse f−f suscep-
tibility. 1 – n = 1.0; 2 – n = 0.9; 3 – n = 0.8; 4 – n = 0.7;
5 – n = 0.6; 6 – n = 0.5.

At the discussion of the condition (3.15), we have noted
that in the phase space (J∗, ε0, n) there is the region in
which the equation (3.9) at T = 0 has no solution w. This
fact can mean that in this region the homogeneous phase
is unstable with respect to another phase with another
equation for w.

Let us consider in connection with this the f−f cor-
relation function (2.37) with q = Q ≡ (π, π, . . . ). In this
case we have

χ0
s(Q) =

Gs
iωs − ε+ −Σs

(3.16)

and

D(Q) = T − 2w(1− w)f(0)J∗ − w(1− w)

×

[(
1

4
W

)2

− (1− w)
(
J∗
)2] 2

aπ

1∫
−1

dz

z

√
1− z2f(az).

(3.17)

Temperature dependence of the inverse susceptibility in
the homogeneous phase is shown in Figure 10 for ε0 = 0,
J∗ = 0.3 and different values of n. Intersection of the
curves of inverse susceptibility with the axis of abscissa
gives the transition temperature Tc to chessboard phase.
It is seen that at the small values of n susceptibility has
a cusp and for such values of n the homogeneous phase is
stable.

For n = 1 (the symmetric case) the f−f susceptibility
has the Curie–Weiss-like behaviour. When n is decreased,
the transition temperature Tc is decreased too. Let us note
that with decrease of n, the critical behaviour of suscep-
tibility is changed. Curie–Weiss-like behaviour with the
critical exponent γ = 1 is replaced by the critical be-
haviour with γ < 1. An analogous situation takes place
in the theory of the s−f model (Kondo lattice) with the
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ε

Fig. 11. ε0 dependence of the transition temperature Tc for
different values of J∗.

infinitely large s−f interaction (double exchange mecha-
nism of indirect exchange between localized spins [24,25]).

Figure 11 shows dependence of the critical temperature
Tc on energy ε0 for n = 1 and different values of J∗. The
curves in Figure 11 are symmetric with respect to ε0 = 0.
For a given J∗ the critical temperature attains a maximum
value at ε0 = 0. In this symmetric case

Tc =
1

2
J∗. (3.18)

Two symmetric values of ε0 for given J∗, at which Tc = 0,
coincide with the critical values of ε0

c defined from Figure 9
for the corresponding value of J∗.

Let us note that the ε0 dependence of Tc has in addi-
tion two symmetric values ε0

∗ and −ε0
∗, such that in the

ranges

ε0
c < ε0 < ε0

∗ and − ε0
∗ < ε0 < −ε0

c. (3.19)

The equation D(Q) = 0 has two solutions for Tc: Tc1 and
Tc2. At ε0 = |ε0

∗| we have Tc1 = Tc2 = T ∗c . This situation
will be discussed in the next section.

In closing this section we want to give the n depen-
dence of Tc for ε0 = 0 and different values of J∗. This de-
pendence is shown in Figure 12. The value of n for given
J∗, at which Tc = 0, coincides with the critical value nc
defined from Figure 8 for the corresponding value of J∗. It
seems that in the t−J model the n dependence of the tran-
sition temperature TN to antiferromagnetic phase must
have an analogous behaviour, because the exact solution
of the model (1.2) can serve as a background for an ap-
proximate solution of the t−J model.

4 Bethe lattice. The chessboard phase

One can show that in the case of chessboard-like distribu-
tion of the localized electrons the equation for the order

ε

Fig. 12. n dependence of the transition temperature Tc for
different values of J∗. 1 – J∗ = 0.1; 2 – J∗ = 0.2; 3 – J∗ = 0.3;
4 – J∗ = 0.4; 5 – J∗ = 0.5.

parameter

δw = wA − wB (4.1)

of the chessboard phase can be obtained in analytical form
for the model (1.2) on the Bethe lattice. The sublattices
A and B are defined by:

pi = ei(QRi) =

{
+1, Ri ∈ A
−1, Ri ∈ B

. (4.2)

Indeed, in this inhomogeneous case we have

wi = w +
1

2
piδw ni+ ≡ 〈X

++
i 〉 = n+ −

1

2
piδn+,

(4.3)

where

δn+ = nB+ − nA+, (4.4)

w =
1

2
(wA + wB), n+ =

1

2
(nA+ + nB+). (4.5)

The chemical potential will be defined from the equation

n = w + n+. (4.6)

The band Green’s function can be represented by

Gs(i, i) = G(1)
s + piG

(2)
s , (4.7)

where

G(1)
s =

1

N

∑′

k

{
Gs(k; k) + Gs(k + Q; k + Q)

}
, (4.8)

G(2)
s =

1

N

∑′

k

{
Gs(k; k + Q) + Gs(k + Q; k)

}
(4.9)
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n+ = T
∑
s

G(1)
s =

1

2

(
1−w −

1

2
δw

)
f(ν) +

1

2

(
1− w +

1

2
δw

)
f(−ν) +

4(a2 − b2)2

W 2

2

π

×

π/2∫
0

dt
sin2 t cos2 t

a2 cos2 t+ b2 sin2 t

{(
f [E(t)] + f [−E(t)]

)
−
(
f(ν) + f(−ν)

)}
, (4.23)

−
1

2
δn+ = T

∑
s

G(2)
s =

1

2

(
1− w −

1

2
δw

)
f(ν)−

1

2

(
1−w +

1

2
δw

)
f(−ν) +

4(a2 − b2)2

W 2

2

π

×

π/2∫
0

dt
sin2 t cos2 t

a2 cos2 t+ b2 sin2 t

{
ν

E(t)

(
f [E(t)]− f [−E(t)]

)
−
(
f(ν)− f(−ν)

)}
, (4.24)

where the summation occurs over the reduced (magnetic)
Brillouin zone. The quantities in the right parts of the
equations (4.8, 4.9) are the matrix elements of the Fourier
transform of Gs(i, i′):

Gs(i, i
′) =

1

N

∑′

k

∑
α,α′

Gs(k + Qα,k + Qα′)

× ei(k+Qα)Ri−i(k+Qα′ )Ri′ (4.10)

where

Qα =

{
0, α = 1

Q, α = 2
. (4.11)

The self-energy part Σs(i, i) can be written in the form

Σs(i, i) = Σ(1)
s + piΣ

(2)
s , (4.12)

where in accordance with (2.25)

Σ(1)
s = −

wG(1)
s − 1

2δwG
(2)
s[

G(1)
s

]2
+
[
G(2)
s

]2 (4.13)

and

Σ(2)
s =

wG(2)
s − 1

2δwG
(1)
s[

G(1)
s

]2
+
[
G(2)
s

]2 · (4.14)

Now one can easily obtain the set of equations for G(1)
s

and G(2)
s . After the Fourier transformation (4.10) from the

Dyson equation for Gs(i, i′) we have in the case of the
Bethe lattice

G(1)
s =

8

W 2

Ωs

Ωs

{
Ωs −

√
Ω

2
s −W

2/4

}
, (4.15)

G(2)
s =

8

W 2

Σ
(2)
s + 1

2J
∗δw

Ωs

{
Ωs −

√
Ω

2
s −W

2/4

}
,

(4.16)

where

Ω
2

s = Ω2
s −

(
Σ(2)
s +

1

2
J∗δw

)2

and
Ωs = ωs −Σ

(1)
s , ωs ≡ iωs + µ.

After solving the set equations (4.13–4.16) for G(1)
s and

G(2)
s , we have for these quantities:

G(1)
s =

8

W 2
ωs −

1
2δwν

ω2
s − ν

2

−
ωs

ω2
s − ν

2

8

W 2

√
(ω2
s − ω

2
1)(ω2

s − ω
2
2), (4.17)

G(2)
s =

8

W 2
ν −

1
2δwωs

ω2
s − ν

2

−
ν

ω2
s − ν

2

8

W 2

√
(ω2
s − ω

2
1)(ω2

s − ω
2
2), (4.18)

where

ν =
1

2
δwJ∗, (4.19)

ω2
1 = ν2 + b2, ω2

2 = ν2 + a2, (4.20)

a2 =
1

8
W 2

(
1− w +

√
(1− w)2 − (δw/2)2

)
,

b2 =
1

8
W 2

(
1− w −

√
(1− w)2 − (δw/2)2

)
, (4.21)

From (4.17, 4.18) we are able to obtain the expression for
Zs(i, i)G

0
s(i, i):

Zs(i, i)G
0
s(i, i) =

1

2

{
1−

W 2

8

1
2δw

ω2
s − ν

2
pi

+
1

ω2
s − ν

2

√
(ω2
s − ω

2
1)(ω2

s − ω
2
2)

}
. (4.22)

This quantity is necessary for evaluation of λi (see
Eq. (2.28)).

Using the expressions (4.17, 4.18, 4.22), after some
relatively cumbersome calculations we can obtain

See equations (4.23, 4.24) above
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λi = −
1

π

π/2∫
0

dt
a2 cos2 t+ b2 sin2 t+ abpi

a2 cos2 +b2 sin2 t

×

{
ln
(

1 + eβ[µ−E(t)]
)

+ ln
(

1 + eβ[µ+E(t)]
)

− ln
(

1 + eβ(µ−ν)
)
− ln

(
1 + eβ(µ+ν)

)}
, (4.25)

where

E(t) = +
√
a2 cos2 t+ b2 sin2 t+ ν2. (4.26)

Let us represent λi in the form

λi = ln
(
1 + exp[β(µ− νpi)]

)
− βΘi. (4.27)

Then the expression (2.27) for wi is simplified to

wi =
1

exp[β(εfi − µ)] + 1
, (4.28)

where

εfi = ε0 − J∗(n− 2w)−
1

2
J∗δn+pi +Θi. (4.29)

Now it is easy to compose the equation for the chemical
potential µ with the help of (4.6), and to obtain the equa-
tion for the order parameter δw. The latter equation has
the form

1

2
δw =

[
w(1− w) +

(
1

2
δw

)2
]

tanh
1

2
βη, (4.30)

where

η = J∗δn+ +ΘB − ΘA. (4.31)

Let us consider solutions of the equation (4.30) for some
cases. Figure 13 shows the temperature-dependent order
parameter δw in the symmetric case for different J∗. At
T = 0 δw is equal to 1. This is the case of the saturated
chessboard phase, when wA = 1 and wB = 0. Let us note
that in this case nA+ = 0, nB+ = 1 and δn+ = 1. At
finite temperature the order parameter δw reveals an ex-
pected temperature dependence with a continuous phase
transition. The general temperature behaviour of δw for
different J∗ in the symmetric case is similar to that of
staggered magnetization for the Heisenberg antiferromag-
net in the mean-field approximation.

Away from the symmetric case the temperature be-
haviour of δw undergoes essential changes that are demon-
strated in Figure 14, where the temperature dependence
of δw for J∗ = 0.3, n = 1 and different ε0 is shown. Two
regions of varying positive values of ε0: 0 ≤ ε0 < ε0

c and
ε0
c < ε0 < ε0

∗ should be distinguished. (For n = 1 the
temperature behaviour of δw is invariant when the sign
of ε0 is changed.) The boundary point ε0

c for given J∗ is

δ

ε

Fig. 13. Temperature dependence of the order parameter δw
for different values of J∗.

δ

Fig. 14. Temperature dependence of the order parameter δw
for different values of ε0. 1 – ε0 = 0.0; 2 – ε0 = 0.1; 3 – ε0 = 0.2;
4 – ε0 = 0.25; 5 – ε0 = 0.3; 6 – ε0 = 0.32; 7 – ε0 = 0.34.

determined with the help of Figure 9 or 11 (see the expla-
nation of Fig. 11 in the text). For J∗ = 0.3, as in the case
of Figure 14, the corresponding value of ε0 is equal to 0.3.

As can be is seen from Figure 14 in the case of 0 ≤
ε0 < ε0

c , the value of δw is equal to 0.5, when T = 0. With
increase of ε0 up to ε0 = ε0

c the temperature dependence of
δw attains two flex points (in particular, see the curve 4).
At the same time, a strong decrease of w = 0.5(wA +wB)
at ε0 → ε0

c is observed, when temperature is increased.
The latter property is clear from a common physical con-
sideration. Let us note that in contrast with the Brandt-
Mielsch paper [2], the quantity w is not a fixed parameter
in our approach. The fundamental parameters of our the-
ory are the following quantities: T, J∗, n and ε0. All the
other quantities depend on these parameters by force of
the corresponding equations.

In the case of ε0 = ε0
c = 0.3 (see the curve 5) the value

of δw is equal to 0.5 when T = 0. Here wA = 0.5, wB = 0
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and w = 0.25. This is the case of the pinning of chemical
potential µ at the renormalized level of the A-sublattice’s
atoms, that is

εfA − µ = 0. (4.32)

The renormalized level of the B-sublattice’s atoms is
higher in energy then the one of the A-sublattice’s atoms,
ΘB > ΘA. Therefore, if

εfB − µ = 0 (4.33)

then wA = 1, wB = 0.5 and w = 0.75, δw = 0.5. This case
can be realized only for the negative values of ε0.

Thus, in the chessboard phase at T = 0 the quantity w
attains only three values: 0.25, 0.5 and 0.75. Accordingly,
the order parameter δw can attain two values: 0.5 and 1.0
(see also Refs. [6,7]). The values of w: 0 and 1 are the
trivial values. In this case δw = 0.

Let us return to Figure 14. In the case of ε0
c < ε ≤ ε0

∗
(see also Fig. 11) we have reentrant behaviour of the order
parameter, i.e. for given ε0 from the region ε0

c < ε0 ≤ ε0
∗

we obtain the homogeneous phase at low and high tem-
peratures, and the chessboard phase between some lower
critical temperature Tc1 and some upper critical tempera-
ture Tc2. The values Tc1 and Tc2, for given J∗ and ε0, can
be obtained from Figure 11. In the limit ε0 → ε0

∗ we have
Tc1 = Tc2 = T ∗c and the chessboard phase disappears

5 Concluding remarks

In the present paper we have considered the strongly cor-
related Falicov–Kimball model in infinite dimensions. Its
Hamiltonian has the form of the simplified t−J model,
where electrons with ↓-spin orientation are localized. With
the help of the diagrammatic technique for the Hubbard
X-operators we have obtained the set of equations for the
band Green’s function, and the expression for the f−f
susceptibility. These results coincide with the correspond-
ing results of Brandt–Mielsch papers [1,2] in the limit
U → ∞. It turns out that in contrast to the Gaussian
density of band states utilized by Brandt and Mielsch,
one can resolve the above mentioned equations in ana-
lytical form for the Bethe lattice with z → ∞, both for
the homogeneous phase and for the chessboard-like dis-
tribution of localized electrons. In the latter case we have
obtained the equation for the order parameter. This equa-
tion contains a hyperbolic tangent which is the character-
istic quantity for mean-field approximation in models with
localized electrons.

It should be noted that the strongly correlated model
defined by the Hamiltonian (1.2) can be considered as a
test mathematical model for an approximate solution of
the t−J model. In recent years the latter model has been
used for a investigation of the related high-temperature su-
perconductivity and antiferromagnetism. Meanwhile, one
must say that in spite of a great number of papers on
this subject the theory of antiferromagnetism in the t−J
model is unsatisfactory. Formal mathematical description

of antiferromagnetic state is analogous to that of chess-
board phase. Therefore, we think that the present paper
can be useful for an approximate description of antiferro-
magnetic state in the t−J model.

It should be also noted that in spite of its simplicity the
Falicov–Kimball model reveals a great number of phase
states (see Refs. [3,8]). In connection with the above-
mentioned remark the most interesting among them are
the states adjoining to the chessboard phase. These are the
state with an incommensurate value of q (see the formula
(2.37)) or the state with different phases coexisting in the
mentioned region. It seems that the theory of these states
and calculation of the general phase diagram require an
additional development. In particular, it is necessary to
define more precisely the phase state in the regions near
the pure chessboard phase at T < T ∗c for given J∗ (see
Fig. 11) and in the analogous region in Figure 12. The
study of the latter region has a special interest in connec-
tion with a possible use of Falicov–Kimball model for an
approximate solution of the t−J model.

This work is supported by the State Scientific Program “Mod-
ern branches of condensed matter physics”, subprogram “Su-
perconductivity”, project 95-056.
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